Supervised Learning

In supervised learning, we will be having the set of sample inputs and outputs. Our job is to create an algorithm with given data based on different parameters (that influence the generation of outputs).
Supervised learning problems can be classified again into Regression and Classification problems.

Regression Problems

In the problems which fall under this category, the algorithm will be predicting an approximate value for the output.
For example, consider a problem where we need to predict share price of stock in future based on its past records. The possible parameters could be - company's import, export data, changes in consumer markets etc.

Classification Problems

In this category, based on different parameters we will classify data to discrete valued outputs. So there won't be a prediction of output values, Instead will map to an output group.

For example, consider a simple spam filter which categories e-mail as spam or not based on the presence of few words.
If we are considering multiple parameters, the plot will be like this.
Continuation - Linear Regression


  1. This was huge information for all ,those who needed these type article. This was really good and of course knowledgeable. Thank you for sharing this much information with us.Indian Customs Export Data


Post a Comment

Popular posts from this blog

Unsupervised Learning

Automate Blog Post creation using Blogger APIs and Python

Setting up Python Flask server on internet via Port forwarding

The beginning of Data Quest

Setting up Jupyter Lab integrated with Python, Julia, R on Windows Subsystem for Linux (Ubuntu)